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Abstract. We discuss certain properties of B e y ' s  phases in two quantum systems with 
supersymmetrically related Hamiltonians and derive an explicit expression for the difference 
in their B e y ' s  phases. Moreover, we obtain an expression for a topological quantity which 
can be interpreted in term of holonomy, and which contains the Berry's phase and is 
invariant in the two supersymmetrically related quantum systems. We take two examples 
to illustrate our findings. The first one is the example of Ahamnav-Bahm effect in which 
the Berry's phases of the two supersymmetrically related quantum systems are equal. The 
second example is a system with a spin-f particle in B time varying magnetic field. We 
obtain the stated topological quantity and, in our analysis, we discover that this quantity 
is corresponding to the essential gauge transformation in such systems. 

1. Introduction 

Since the advent of the concept of Berry's phase in 1984 [I], a lot of attention has 
been drawn to the study in both quantum mechanics and classical physics [2]. In fact, 
the characteristics of Berry's phase can be explained in mathematics as the holonomy 
in a Hermitian line bundle [3-51, and can be generalized to non-adiabatic (and 
non-cyclic Hamiltonian) situations [6,7] and non-Abelian cases [7,8]. Recently, some 
fresh developments have emerged: for instance, the study of Berry's phase using the 
evolution operator approach [9-111, the extension of Berry's phase format to a non- 
"~l,lll,la,l bybrerll I,,,, arlarybrs "1 LUC ocrly b pllascs 111 G"II=:Is.LII > L a L C D  LLL-10, an" 
others associated with the interpretations using features of the Berry's phase [ 17-21]. 

Meanwhile, supersymmetric quantum mechanics [22,23] is another fruitful concept 
in physics and has been widely studied for the last decade [24-321. Apart from 
one-dimensional systems [22], the generalizations to higher-dimensional systems have 
also been presented [33-361. In fact, supersymmetric quantum mechanics is quite a 
general theory in quantum mechanics. It is then interesting to investigate the properties 
of Berry's phases in supersymmetric quantum mechanics. 

Since Berry's phase in general results from cyclic evolution of a quantum system, 
we need to discuss first certain relevant features of time-dependent supersymmetric 
quantum mechanics in section 2. In particular, we shall make an  assumption (with a 
concrete example presented in section 5 )  that the instantaneous positive energy eigen- 
states of the two supersymmetrically related Hamiltonians can be transformed into 
each other (equation (2.5)) rendering our following discussions feasible. 

We shall then find, as shown in section 3, that the Berry's phases involving two 
supersymmetrically related eigenstates are not independent. In fact, they are different 
by a factor which can be evaluated by using the supersymmetric properties. 

0305-4470/92/061745+ 12504.50 @ 1992 IOP Publishing Ltd 1745 

vr--:.:-- , 4 4 3  ---a..-:- -.-.I.- " % _  -I.---- :.. ^_L ---... ^.^.^^ r * -  I C ,  ._> 



1746 K M Cheng and P C W Fung 

Following this, we construct a topological quantity in each of the two supersym- 
metrically related systems in section 4. We then find out that these two topological 
quantities are in fact identical. In terms of topological terminologies, we identify the 
invariant topological quantity with the holonomy corresponding to the connection 
which is invariant in the two supersymmetrically related quantum systems. 

In section 5 ,  we propose two examples to illustrate our results. The first one is the 
example of Aharonov-Bohm effect [36] similar to that discussed in [l]. It is shown 
that in this example, the Berry's phases for the two supersymmetrically related quantum 
systems are identical and also play the role of the invariant topological quantity we 
obtained in section 4. 

The second example is the system of a spin-f particle in a magnetic field. We 
construct the supersymmetric partner of this system and evaluate the Berry's phases, 
their difference and the invariant topological quantity mentioned in section 4 for these 
two supersymmetrically related systems. Moreover, apart from the topological interpre- 
tation in section 4, the invariant quantity is also shown to correspond to the essential 
gauge transformation and hence could be related to concrete physical meaning. Section 
6 concludes our findings of this paper, together with discussions of certain relevant 
issues. 

2. Time-dependent supersymmetric quantum mechanics 

Let us consider a supersymmetric Hamiltonian %' which is parametrized by time- 
dependent parameters R = (X, Y, . . . ). At any instant, the supersymmetric Hamiltoflian 
%(R) is single valued and can be written in terms of the supercharge operators, Q(R) 
and @(R)[22,24]: 

@(R)={C%R), df(R)} 
or in the diagonal matrix form: 

%(R)  = (2.2) 

where f i , ( R )  and fi2(R) are the supersymmetrically related Hamiltonians and can be 
factorized into the following forms: 

f i , (R) = A + ( R ) k ( R )  and f i 2 j ~ )  = A - ( R ) ~ + ( R )  (2.3) 

with any linear operators A*(R).  
In particular, > ( R )  = (l/~'?)(*a/ax+ W(x,  R)) in the one-dimensional case, 

where W(x, R) is the superpotential and must satisfy the nonlinear differential 
equations [24]: 

(2.4~1) a 
ax 

W2(x,R)+- W(x ,R)=2VI(x ,R)  

and 

(2.46) 

In view of (2.1). supersymmetry is pfeserved at any instant. Further, we demand 
that once a positive energy eigenstate of H, (say ln l (Ro)) )  is initially supersymmetrically 

a 
ax 

W2(x, R )  -- W(X, R) = 2  V ~ ( X ,  RI. 
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related with a positive energy eigenstate of d2 (say In2(Ro))), then they will be 
supersymmetrically related throughout the evolution such that 

A i - ( R ) l n , ( R ) ) = ~ l n 2 ( R ) )  (2.5a) 

a ’ ( R ) h ( R ) ) = m l n , ( R ) )  (2.56) 

where R is the value of the parameters at time t and E.(R) (20) is the common energy 
eigenvalue of In,(R)) and ln,(R)). 

According to Witten’s paper [23], our requirement may be satisfied in the one- 
dimensional case by conjugation transformation. A supersymmetric quantum system 
at a particular R is related to the initial system (say at R,) by conjugation transformation: 

6CW) = (exp(-F(x, R)))@(%)(exp F(x,  R ) )  (2.6) 

&R) = (exp F(x,  R))&%)(exp ( -F(x ,  R ) ) )  (2.7) 

%RI = {6+(~), &R)} (2.8) 
where F(x, R )  is a function that satisfies J F / a x  = W(x,  R )  - W(x,  R d .  ~ 

As discussed in [23], the numbers of zero-energy ground states of H ,  and d, are 
separately invariant under conjugation transformation as long as the asymptotic 
behaviour of W(x,  R )  at large 1x1 is unchanged. Therefore, the ‘structures’ of the spectra 
of d, and d2 are unchanged throughout the transformation and our requirement is 
satisfied. 

In higher-dimensional cases, conjugation transformation may be different from 
(2.6)-(2.8) and the argument of asymptotic behaviour of superpotential may need to 
be modified. Anyway, in the following discussions, we assume that (2.5) are satisfied 
during the evolution of the system no matter whether the evolution is conjugation 
transformation. 

3. Difference between Berry’s phases 

The supersymmetrically related Hamiltonians d, and d, described in the previous 
section are separately goveming two different quantum systems. The Berry’s phases 
of these two systems under the adiabatic evolution, with positive energy initial states 
In,(Ro)) and In,(&)) which are supersymmetrically related (so satisfy (2.5)), along a 
circuit % in the parameter space are given by [l]: 

n ( W = i  f&dR)IVRnl(R)).dR (3 . la)  

(3.lb) 

In (3.1), the states In,(R)) and In,(R)) are the instantaneous positive energy eigenstates 
of d,(R) and H,(R)  respectively and can be chosen to be related as (2.5) for the 
parameters R on the circuit ‘3. 

It should be noted that we further assume, as done in [l], that l n , ( R ) )  and In2(R)) 
are discrete and single-valued in the parameter domain that includes the circuit %. 

We first consider the operation of V, on both sides of (2.5) arriving at: 

(VRA-(R))lni(R))+Ai-(R)lv.ni(R)) 

= ( V . m ) l n , ( R ) ) + ~ I V R n , ( R ) )  (3.2a) 



(3.26) 

We then attach these two equations by the arbitrary positive energy eigenbras 
(mZ(R)I and (m,(R)l respectively: 

(3.3rr) 

(3.36) 

In particular, by using only (n,(R)I and (n,(R)I for calculation of Berry's phases, we 
have: 

(3.40) 

(3.4b) 

it is found that the integrands in (3 . i )  appear in (3.4) and we can then obtain the 
difference between them: 

N R )  (n,(R)IV.nl(R))-(n2(R)(V~n,(R)) 
= ( V , m - ( n , ( R ) I ( V , A - ( R ) ) l n , ( R ) ) ) / J E . ( R )  (3 .5n)  

by  (3.4a), or 

((n,(R)t(v~A'(R))ln,(R)) - V , m ) / m  (3.56) 

by (3.4b). 
It is obvious that (n2(R)l(VRA-(R))lnl(R)) is in fact the complex conjugate of 

(n,(R)I(V.A+(R))In,(R)). Moreover, the difference A(R) is purely imaginary because 
both integrands are purely imaginary and so we have from (3.56): 

R e ( n , ( R ) ! ( v . ~ + ( R ) ) t n , ( R ) ) / J = ( V R ~ ) / ~  (3.6) 

which is divergence of some function of R and will vanish under circuit integration. 
Finally, using (3.5)-(3.6) and the conjugate relation of (n,(R)I(V,A-(R))(n,(R)) 

and (",(R)l(VRA+(R))1n2(R)), the difference in integrands A(R) is then given by: 

A(R) = i I m ( n , ! R ) ! ! V . ~ A ' ( R ) ) l n 2 ( R ) ) / ~  (3.7) 

and the difference of the Berry's phases can be obtained: 

yl(%')-y2(%')=i A(R).dR. (3.8) k 
We thus derived an explicit form for the difference of the Berry's phases for the 

two supersymmetrically related quantum systems. 
In particular, if A(R)=V,F(R) for some function 9(R) ,  (n,(R)IVRnl(R)) and 

(n2(R)IVRn2(R)) will be related by gauge transformation and the Berry's phases 
acquired in the two supersymmetrically related quantum systems under adiabatic 
evolution along a circuit W will be equal. 
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4. The invariant topolDgical quantity 

Using the fact that (n,(R)I(V,A-(R))ln,(R)) is the complex conjugate of 
(n,(R)l(V,A'(R))(n,(R)), we can rewrite (3.7) as: 

(~,(R)~v~~l(~))-(~z(R)tvR~z(~)) 
= i t m ( n ~ ( R ) l ( v R A + ( R ) ) l n z ( R ) ) / ~  

= ( ~ / ~ ~ ) ( ( ~ I ( R ) I ( ~ R A + ( R ) ) ~ ~ Z ( R ) )  

-(nz(R)l(v~A-(R))tni(R))). (4.1) 

After some rearrangements and in view of (2 .5) ,  we arrive at an equality: 

(ni(R)IVRnl(R))+i I m ( ~ i ( ~ ) ~ ~ ( ~ ) ( v ~ ~ - ( ~ ) ) ~ ~ , ( R ) ) ~ ~ , ( ~ ) ) / ( ~ ~ ~ ( ~ ) )  

=(nz(R)IvRnz(R))+i Im(n2(R)IA-(R)(v~A+(R))ln~(R))/(2E.(R)). (4.2) 

In the equality (4.2), we observe that the quantities on both sides do not have the 
same form. However, because the roles of the twoHamiltonians can be exchanged, 
we may rewrite H , ( R )  in a form similar to that of H,(R) in (2.3) and vice versa, that 
is: 

&(R) = B + ( R ) B - ( R )  (4.3a) 

I?,(R) = B - ( R ) B + ( R )  (4.3b) 

Based on (4.3), we can still obtain an equality similar to (4.2) but with k ( R )  
, where B*(R) are some linear operators different from A*(R).  

replaced by k S ( R ) :  

(n,(R)IV.dh(R))+ i I ~ ( ~ , ( R ) I ~ ~ ( R ) ( ~ R B ' ( R ) ) ( ~ , ( R ) ) / ( ~ E " ( R ) )  

= (n,(R)IV,nz(R)) 

+ i Im(nz(R)I~+(R)(V,B-(R)) lnz(R)) / (2E. (R)) .  (4.4) 
.. .. with the heip of (3.6) and ( X i ) ,  it is eiementary to prove that: 

(n,(R)Ik-(R)(v,B+(R))In,(R))= (nl(R)tA+(R)(v,Ai(R))In,(R)) (4.50) 

(nZ(R)Ik'(R)(V,B~(R))In,(R)) = ( ~ Z ( R ) ~ A ~ ( R ) ( V , A + ( R ) ) ~ ~ ~ ( R ) ) .  (4.56) 

Therefore, by combining (4.2) and (4.4), the equality becomes: 

(ndR)lVRn,(R))+i tm(ni(R)l~+(R)(v,A-(R))ln,(R))/(2E"(R)) 

= (nz(R)lvRndR)) 

+ i  Im(nz(R)IB+(R)(V,B-(R))In,(R))/(2E.(R)). (4.6) 

Clearly, both sides in (4.6) share the same form and we can then conclude that the 
topological quantity, which depends on the circuit e, 

i f , o . ( R ) . d R = i  fq (a , (R)+p, (R)) .dR (4.7) 
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is invariant in the two ppeZsylflmetrically related systems whose Hamiltonians 
are written in the forms: H, =ATA;, where i =  1 or 2. In the above, q ( R )  and &(R)  
are given by: 

ai(R) =(ni(R)IVRni(R)) (4.8) 

(4.9) 

K M Cheng and P C W Fung 

P j W )  = i Im(n,(R)IAT(R)(V,~T(R))In,(R))/ ( 2 E . W )  

u ; ( R ) = a , ( R ) + P , ( R ) .  (4.10) 

We now consider the replacement of Ini(R)) by exp{ip(R)}lnj(R)) and find that 
the invariant quantities in (4.8)-(4.10) are transformed as: 

(4.11) 

(4.12) 

uj( R )  + uj,(R) + iV+(R). (4.13) 

It is noticed that q ( R )  and uj(R) transform as gauge potentials and hence can be 
regarded to be connections defined in the Hermitian line bundles ( q ( R )  is identified 
with the natural connections as discussion in [ 3 ] )  associated with the quantum systems 
under consideration. Since the equality stated in (4.6), ui(R)  is an invariant connection 
in the two supersymmetrically related systems and the phase-like invariant quantity 
expressed in (4.7) is the holonomy corresponding to such connection. 

5. Examples 

5.1. %e Aharonov-Bohm effect 

WO W U " l 0  ,,KC ,U L.UII*LUG-r * I ,  ca*rrlym U1 LllC fi,,4,uII"Y--D"I*,,, Cl lCL, L,", d D  UIX."IICU 

in [I]. Let there be a particle with unit charge confined to a box situated at R and not 
penetrated by the flux line as shown in figure 1 in [I]. We write the Hamiltonian of 
this system as: 

..I^ ... ,I a:,.- I^ ^^_^:A-- -- ^ P I C _  A L  D-L- ^a^^L r,<, ^ ^  2: 1 

f i , ( ~ ) = & - a ( r ) ) * +  V,(r-R), (5.1.1) 

where a(r)  is the vector potential, V , ( r - R )  is the potential experienced by the particle 
inside the box and hence depends on the related position^vector r-R. 

As stated in [ I ] ,  the energy eigenstate In,(R)) of H , ( R )  with positive energy 
eigenvalue E. (independent of R )  is given by: 

(rln,(R)) = exp[ i I r  dr' . a( r ' ) ]  $"(r-R) (5.1.2) 

where $ . ( r - R )  is the energy eigenwavefunction of G,(R) with energy eigenvalue E, 
as the flux is absent ( a ( r )  =0). 

R 

The Hamiltonian f i , ( R )  can be factorized into the form ( 2 . 3 ) :  

f i , ( R )  = f(V -ia(r)  + w( r - R))(-V +ia(r)+ w(r- R ) )  

= L + ( R ) A - ( R )  (5.1.3) 

in which we use i = -iV (set h = 1) and w(r-R) is the superpotential which satisfies 
the differential equation: 

2V, ( r  - R )  = w 2 ( r -  R)+V w(r -R). (5.1.4) 
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Moreover the expressions of operators A'(R) are then given by: 

A'(R) = ( l / f i ) ( i V T i a ( r ) +  w(r-R)). (5.1.5) 

We then construct the supersymmetric partner (denoted by f i 2 ( R ) )  for f i , ( R ) :  

f i 2 ( R )  = k ( R ) k ( R )  

= f(@- a(r))'+ v2(r- R )  

where V2( r - R)  is given by: 

(5.1.6) 

2V2( r -R)  = w'(r -R) -Vw(r - R ) .  (5.1.7) 

The energy eigenstate, denoted by ln2(R)), can be obtained by  the operation of 
k ( R )  on (n , (R))  as stated in (2.5): 

In2(R))= (l/a)L-(R)lni(R)) (5.1.8) 

where l / a  is the normalization factor. Moreover, due to the form of f i2 (R)  (5.1.6), 
In,(R)) can also be expressed similarly to (5.1.2): 

\ ~ l ~ ~ 2 \ . . l l - = . v  ,-,, -"__ 1: 1 L JR"'"\, rA-,-,-,,i J J ' P n ! r - - J  ,- ::.:.:: 

where & ( r - R )  is the energy eigenwavefunction of f i2 (R)  with energy eigenvalue E. 
as the flux is absent (a(  r) = 0)  and satisfies 

& ( r - R )  = (l/a)(-V+ w ( r - R ) ) & ( r - R ) .  (5.1.10) 

As stated in [l], the quantities a , ( R )  ( i  = 1 or 2) are given by: 

a, (R)  (ni(R)IVRnl(R)) 

= -ia(R) (5.1.11~1) 

and 

= -ia(R). (5.1.1 lb) 

We see that a , ( R )  is equal to 0 2 ( R )  and depend on the vector potential a ( R )  only. 
The difference A(R)  (defined in (3.5)) is then identical to zero and the Berry's phases 
associated with the two systems are given by: 

y d R )  = y 2 ( W  = $ a ( R )  dR. (5.1.12) 

Finally, the invariant quantities (the holonomies defined in (4.7)) of the two systems 
0 

are identical to the Berry's phases in this particular example. 
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5.2. Spin-f particle in magneticfield 

Let us consider a spin-f particle in a time varying magnetic field B with a background 
field f :  

A, = p B .  S+f (5.2.1) 

K M Cheng and P C W Fung 

where B = IBl(sin 8 cos $, sin 0 sin $, cos e). 
In which, 0 and $ are the usual spherical polar angles which are time dependent. 

For simplicity, we assume the magnitude of the magnetic field is constant and equal 
to 1, such that IBI= 1.  Therefore, the Hamiltonian in (5.2.1) is modified to be: 

A, = ". S+$ (5.2.2) 

where n = (sin f3 cos $, sin 0 sin $,cos e). 
In (5.2.2) we have taken p = h = 1 for convenience. It is noticed that A, is para- 

metrized by the spherical polar angles (@,$) and hence denoted by A,(@, $). The 
parameter space is then simply 2-sphere. 

We can rewrite H , ( @ ,  $) in a form similar to (2.3) by introducing a set of instan- 
taneous spin operators: 

S ~ ( e , $ ) = S ~ s i n $ - S ~ c o s $  (5.2.3a) 
6 1 0  A \ - 6  , . , . c a c , . s ~ ~ c  r , . r a r i . . ~ - ~  r : n ~  
U),,", q,, - ox C"I " I"> q, I UV b"1" a,,, q, 

iZ(s, $1 =S, sin e cos $+Sy sin B sin $+Sz cos e 

.. 
{5.?.?b) Yj O.L. " 

( 5 . 2 . 3 ~ )  

and the instantaneous spin ladder operators are defined by: 

S:(s,$)=S~(e,4)+iS:(e, 4 )  (5.2.4a) 

S~(e ,$)=S~(e ,$) - iS~(e ,$) .  (5.2.46) 

(5.2.5) 

(5.2.6) 

Obviously, f i2(0,  $) has the same form as that-of GI(& $) b t t  with the magnetic field 
in the opposite direction. At any instant, H , ( B ,  $) and H2(B, 4) share the same 
two-dimensional Hilbert space. We may assume that the instantaneous Hilbert space 
is spanned by the instantaneous eigenstates of H,(O, $) denoted by lq+(@, 4)) and 

Ado, $)lv+(@, $))=IY+(@, 4)) (5.2.7a) 

Al(e ,$) lwo,  +))=o (5.2.76) 

IY-(e, 4)) such that: 

(5.2.8a) 

(5.2.86) 
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Once I*+(@, 4)) is given, l 'U-(O, 4)) can be obtained by the instantaneous spin 

(5.2.9~1) 

ladder operator defined by (5.2.4b): 

iL (e ,  +)l*+(e, +))= IUO, 4)) 
and conversely, by (5.24~1): 

&(e, b)l*-(e, 4)) = Iv+(e, $1). (5.2.9 b )  

Obviously, the states I**(@, 4)) are also eigenstates of k2(0, 4)  with eigenvalues 

ci,ce,4)l*-c0, 4n=l*-(e,+)) (5.2.1Oa) 

g2(0,4)l*+(0,4))=o. (5.2.10b) 

Moreover, in view of (5.2.5) and (5.2.6), SL(0, 4) are acting as the supersymmetric 
ladder operators. So that the states (W,(6', 4)) are supersymmetrically related states in 
accordance with (5.2.9). 

0 and 1 respectively: 

One possible expression for I*+( e,+))  is given by: 

and its supersymmetrically related state is: 

(5.2.1 l a )  

(5.2.11 b) 

We further assume that the evolutions of the systems are adiabatic so that we can 

We can derive the element a,. dR, with R = ( e , + )  and V R  = (J/M, J/J$), by using 

(5.2.12) 

apply our arguments in the previous sections for this example. 

the expression (5.2.11a): 

a, .dR=(Y+(B, q5)lVRT+(0, r$)).dR = (i/2)(1 -COS 0) d4. 

Moreover, we can also evaluate the element p ,  . dR: 

Pi.dR=(*+(O, 4)IW0, ~ ) ( V R S L ( O ,  4))Iv+(e, $))/2 ' dR 

=(*-(e, $ ) / ( v R g ( @ ,  4))l*+(e, 4))/2.dR 

= (i/2) cos 0 d+ (5.2.13) 

which combines with (5.2.12) to give the invariant connection obtained in section 4, 
relations (4.8)-(4.10), i.e.: 

u , .dR=(a ,+P, ) .dR=( i /Z)  d 4 .  (5.2.14) 

The corresponding connection form for k2(0, c$), uz.dR, is also (i/2) d 4  because 
it is invariant in the two systems according to (4.6). Moreover, because the curvature 
form corresponding to U,. dR vanishes identically, the connection form U,. dR is called 
a flat connection [37]. Furthermore a2.dR can be calculated by using (5.2.13) and 
(5.2.14) and the fact that p !  = 5 f :  

a 2 . d R =  (i/2) d+-&.dR 

= (i/2) d$+p l .dR  = (i/Z)(l+cos 0) d+. (5.2.15) 
Certainly, a 2 . d R  can be calculated directly a s  well as a, . d R  in (5.2.12) 
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By the way, the Berry's phases of the supersymmetrically related systems, their 
difference and the path dependent phase-like quantity, if,uj.dR, can he found by 
using (5.2.12)-(5.2.15): 

aI d R  = -y2(%') = -i a2 .dR = (-1/2)0( e) (5.2.16) 

(5.2.18) 

where Cl( e) is the solid angle that %? subtends at B = 0 (the origin of 2-sphere). 
Furthermore, we would like to explain the physical meaning of the invariant 

connection form oi.dR ( i  = 1,2)  in our example. It appears that the issue is related 
to the dificulty in defining a spinor on a 2-sphere. The expression of positive energy 
eigenstate of Hl(O, 4) in (5.2.11a) is reasonable everywhere except at the south pole. 
Therefore, it is essential to have a complementary expression for the same state as 
expressed in (5.2.110) [38]: 

(5.2.19) 

It is easy to see that I@+(& 4)) is reasonable everywhere except at the north pole 

l@+(8, 4)) =ei@lY+(8, 4)). (5.2.20) 

The element a, . dR calculated by using (5.2.19) or (5.2.20) is different from that 
calculated by using (5.2.110) and corresponds to the different choices of connections 
(d,) on the eigenspace bundle [38-401, such that: 

id+(Y)=(Y+(e,  ~ ) ~ v R Y + ( e , ~ ) ) . d R = ( i / 2 ) ( 1 - c o s  e) d.$ (5.2.21a) 

id+(@)=(@+(O, 4) lVR@+(8 ,  +)).dR = (i/Z)(-l -cos 0) d+. (52.216) 

and differs from IY+(O, 4)) by a phase factor: 

Clearly, d+(Y)  and &+(a) differ by a gauge transformation, 

&+("U)= &+(@)+d4. (5.2.22) 

Similar arguments can he applied to the positive energy eigenstate of &(e, 4) and 
introducing a complementary state, i.e. I@-(& 4)), 

I 

l@-(e, 4))=ei"I\Y-(8, 4)) 

(5.2.23) 

which is analogous to (5.2.19). 
Also we can obtain a gauge transformation analogous to (5.2.22) by using (5.2.1 Ib): 

&_('U) = &-(a) -d+. (5.2.24) 

Finally, we can conclude, based on (5.2.14), (5.2.22) and (5.2.24), that the invariant 
connection form, ui.dR, is corresponding to the essential gauge transformation (up 
to a factor i / Z )  shared by the two supersymmetrically related systems in this example. 
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6. Discussions 

We have obtained in section 3 the difference of the Berry's phases in the two supersym- 
metrically related systems, as given in (3.8). In section 4, we have successfully con- 
structed a topological quantity ( i h  udR)  .dR) which is path dependent, phase-like, 
including the Berry's phase and, more important, this quantity is invariant in the two 
supersymmetrically related systems. Such a topological quantity can be understood as 
the holonomy corresponding to the invariant connection (ui(R)) we constructed. 

Our aim is to show the invariance of the topological quantity in two super- 
symmetrically related quantum systems. In the process of such analysis, we find that 
by introducing the linear operators B*(R) as defined in (4.3), we can rewrite the 
equality (4.2) into the desirable equality (4.6). However, by only considering (4.31~). 
we have the freedom to choose another pair of the oprators B*(R) and hence the 

hand, we must emphasize that by taking constraint (4.36) into account, E*(R) are 
uniquely defined without any ambiguity. 

It is also worth mentioning that the dynamical phases acquired by the two super- 
symmetrically related quantum systems under adiabatic evolution, as discussed in 
section 2, are identical and equal to $ w  E.(R) .dR while the Berry's phases are not. 
On the other hand, the topological quantities we obtained can in some sense be regarded 
as 'topological phases' which are invariant for supersymmetrically related quantum 
systems just like the dynamical phases. It would be an interesting analysis in future 
to find out whether this topological quantity has any physical implications. 

In section 5 ,  we presented two examples. In the Aharonov-Bohm example, the 
difference of the Berry's phases of the quantum systems under considerationn are 
identical to zero and the topological invariant quantity is nothing but identical to the 
Berry's phase of the system. We have also taken the system of spin-$particle in magnetic 
field as an example in our analysis. We have evaluated the Berry's phases as in (5.2.16), 
the difference of the Berry's phases in (5.2.17) and the invariant topological quantity 
as expressed in (5.2.18) of the supersymmetrically related systems. Moreover, we have 
shown that the invariant quantity uj.dR in this example corresponds to the essential 
gauge transformation [38-401 shared by the two supersymmetrically related systems. 
Whether such a correspondence is valid in other systems appears to be worth pursuing 
and awaits for further investigations. 

+---l--:--I n..-n+:+.l I A  7 )  -n +ha ,-LAm ,.c n+i lJ\ :- nnnPr.ll nn +hp Ather 
,"y"1"~1u" yU'L'L.,, 111 \'..'I u'y"'Y" "LI L L l l  CI."IIL "L Y ,*., L.. 6'.L'LU'. -11 .11- Y....,. 
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